Sama ada anda pelajar pintar atau tidak, anda biasa melakukan kesalahan-kesalahan tertentu semasa menjawab soalan. Sama ada anda sedar atau tidak, anda patut peka mengenainya dan patut pula membuat persediaan mengelaknya.
Ada 5 kesalahan lazim seperti berikut
[1] Cuai semasa menggunakan tanda positif atau negatif.
Elok menyemak semula kerja anda (gunakan kaedah SSS - Sistem Semakan Semula) jika anda was-was dengan jawapan anda. Ada 2 cara dalam SSS.
- [1] Semak langkah demi langkah
- [2] Membina semula jawapan sehingga jawapan kedua sama dengan jawapan pertama.
Lihat contoh berikut.
Q1. Given that 2x2 + 2p = 3x - p + 1. Find p if the curve meet the straight line at one point only.
Kesalahan pelajar yang cuai terletak pada sikap mereka bila KIRI - KANAN = 0
Sepatutnya mereka menulis 2x2 + 2p - 3x + p - 1 = 0 (menukar semua tanda sebelah kanan)
2x2 - 3x + 3p- 1 = 0
so a =2, b = -3, c = 3p - 1
Guna b2 = 4ac dan selesaikan sehingga dapat nilai p.= 17 / 24..
[2] Tidak faham atau peka dengan makna jawapan atau jawapan-jawapan.
Kebanyakan jawapan di dalam Addmath adalah jawapan berangka (maksudnya x = 0,0.5, 1, 11/12, 2, 3.55, 4/13....) dan bukan berbentuk algebra. Ada juga beberapa soalan yang mengkehendaki jawapan berbentuk algebra tetapi peratusnya sangat kecil, sekitar 10%. Kaedah mengecam jawapan berangka atau algebra adalah seperti berikut.
JENIS 1 : kalau anu yang digunakan 1 atau 2 jenis, maka jawapannya MESTI berangka. Lihat Q1 di atas, anu ada 2 jenis iaitu x dan p, maka jawapannya berangka , iaitu 17/24
JENIS 2 : kalau anu yang digunakan melebihi 2, jawapannya adalah berbentuk algebra
Q2. Given that x+y, x, z are the three first terms in Arimethic Progrresion (AP). Find x in terms of y and z.
Ada 3 anu di dalamnya iaitu x, y ,z
Cuba kita selesaikan. AP : T2 - T1 = T3 - T2
x - (x+y) = z - x
x - x -y = z - x
-y = z - x
so, x = y + z (jawapannya berbentuk algebra).
[3].Kurang mengetahui tentang kecerunan positif (/) atau negatif (\) sehingga jawapan menjadi salah.
Kesilapan meletak tanda positif atau negatif pada kecerunan seperti yang banyak berlaku di dalam tajuk Linnear Law mengakibatkan kerugian markah yang banyak.
[4] Anda tidak bijak menggunakan hukum log.
Ramai pelajar menggunakan hukum ini sehala sahaja. Sebenarnya ia mesti digunakan secara 2 hala. Contohnya. log 3 (xy) = log 3 x + log 3 y.. Pelajar mesti tahu menggunakan kiri ke kanan atau sebaliknya di dalam kes-kes tertentu.
JENIS 1 (KIRI KE KANAN)
Q1. Solve the following log 2 (xyz) = log 2 x + log 2 y + log 2 z (biasa digunakan)
JENIS 2 (KANAN KE KIRI)
Q2. Solve the following : log 2 p - log 2 q + log 2 r = log 2 (pr/q).(jarang difahami)
Pelajar terbiasa dengan kaedah jenis 1 sehingga mereka menjadi amat mahir dengannya. Akan tetapi bila terjumpa soalan jenis 2, mereka mula kelam kabut dan tunggang-langgang. Ini biasa terjadi kepada pelajar-pelajar saya dan tentunya terjadi juga kepada pelajar-pelajar lain.
[5] Pembezaan dan pengamiran adalah 2 tajuk yang saling bergantungan.
Jika anda boleh menguasai salah satunya, bermakna anda juga boleh menguasai yang satu lagi. Kedah terbaik ialah membuat litar pintas bagi mereka. Guna kaedah 1212 (1 soalan pembezaan & 2 soalan pengamiran secara berselang-seli) bagi setiap latih tubi anda. Jangan sekali-kali tinggalkan soalan ini dan membiarkan diri anda mendapat kosong markah.
Tiada ulasan:
Catat Ulasan